Introduction to Mathematics and Modeling

lecture 6

Integrals
This week

The integraph, an instrument for measuring integrals

1. Section 5.1: area estimating with finite sums
2. Section 5.2: limits of finite sums
3. Section 5.3: the definite integral
4. Section 5.4: the fundamental theorem of calculus
We can write sums in a shorter way using the Σ-notation:

\[
\sum_{k=M}^{N} a_k = a_M + a_{M+1} + a_{M+2} + \cdots + a_{N-1} + a_N
\]

- Σ is the Greek letter “S” (pronounced as ’sigma’), which refers to “Sum”.

\[
\sum_{k=M}^{N} a_k
\]
We can write sums in a shorter way using the Σ-notation:

$$\sum_{k=M}^{N} a_k = a_M + a_{M+1} + a_{M+2} + \cdots + a_{N-1} + a_N$$

- Σ is the Greek letter “S” (pronounced as 'sigma’), which refers to “Sum”.
- k is the index.
The Σ-notation

We can write sums in a shorter way using the Σ-notation:

$$\sum_{k=M}^{N} a_k = a_M + a_{M+1} + a_{M+2} + \cdots + a_{N-1} + a_N$$

- Σ is the Greek letter “S” (pronounced as ’sigma’), which refers to “Sum”.
- k is the index.
- The index starts at M and ends at N.
We can write sums in a shorter way using the \(\Sigma \)-notation:

\[
\sum_{k=M}^{N} a_k = a_M + a_{M+1} + a_{M+2} + \cdots + a_{N-1} + a_N
\]

- \(\Sigma \) is the Greek letter “S” (pronounced as ’sigma’), which refers to “Sum”.
- \(k \) is the index.
- The index starts at \(M \) and ends at \(N \).
- \(a_k \) is the \(k \)-th term of the sum, and is a formula containing \(k \).
We can write sums in a shorter way using the Σ-notation:

$$\sum_{k=M}^{N} a_k = a_M + a_{M+1} + a_{M+2} + \cdots + a_{N-1} + a_N$$

- Σ is the Greek letter “S” (pronounced as 'sigma’), which refers to “Sum”.
- k is the index.
- The index starts at M and ends at N.
- a_k is the k-th term of the sum, and is a formula containing k.
- If $N < M$ then the sum is equal to 0 by convention.
The Σ-notation

We can write sums in a shorter way using the Σ-notation:

$$\sum_{k=M}^{N} a_k = a_M + a_{M+1} + a_{M+2} + \cdots + a_{N-1} + a_N$$

- Σ is the Greek letter “S” (pronounced as ‘sigma’), which refers to “Sum”.
- k is the index.
- The index starts at M and ends at N.
- a_k is the k-th term of the sum, and is a formula containing k.
- If $N < M$ then the sum is equal to 0 by convention.
- The index is a dummy:

$$\sum_{k=3}^{6} a_k = \sum_{p=3}^{6} a_p = a_3 + a_4 + a_5 + a_6$$
The Σ-notation

\[\sum_{k=1}^{12} k^2 = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2 + 7^2 + 8^2 + 9^2 + 10^2 + 11^2 + 12^2 \]

\[= 1 + 4 + 9 + 16 + 25 + 36 + 49 + 64 + 81 + 100 + 121 + 144 \]

\[= 650. \]
Examples

\[
\sum_{k=1}^{4} (-1)^k k = (-1)^1 \cdot 1 + (-1)^2 \cdot 2 + (-1)^3 \cdot 3 + (-1)^4 \cdot 4 \\
= -1 + 2 - 3 + 4 = 2.
\]
Examples

1.3

\[\sum_{k=1}^{4} (-1)^k k = (-1)^1 \cdot 1 + (-1)^2 \cdot 2 + (-1)^3 \cdot 3 + (-1)^4 \cdot 4 \]

\[= -1 + 2 - 3 + 4 = 2. \]

\[\sum_{k=1}^{2} \frac{k}{k+1} = \frac{1}{1+1} + \frac{2}{2+1} \]

\[= \frac{1}{2} + \frac{2}{3} = \frac{7}{6}. \]
The sum of the first n positive integers is equal to $\frac{n(n + 1)}{2}$.

With \sum-notation:

$$1 + 2 + \cdots + (n - 1) + n = \sum_{k=1}^{n} k = \frac{n(n + 1)}{2}.$$
Theorem

The sum of the first n positive integers is equal to $\frac{n(n + 1)}{2}$.

- with Σ-notation:

$$1 + 2 + \cdots + (n - 1) + n = \sum_{k=1}^{n} k = \frac{n(n + 1)}{2}.$$

- Write out the terms in the sum twice:

$$1 + 2 + \cdots + (n - 1) + n$$

$$n + (n - 1) + \cdots + 2 + 1$$
Arithmetic series

Theorem

The sum of the first \(n \) positive integers is equal to \(\frac{n(n + 1)}{2} \).

- with \(\Sigma \)-notation:
 \[
 1 + 2 + \cdots + (n - 1) + n = \sum_{k=1}^{n} k = \frac{n(n + 1)}{2}.
 \]

- Write out the terms in the sum *twice*:
 \[
 \begin{array}{cccccccc}
 1 & + & 2 & + & \cdots & + & (n - 1) & + & n \\
 n & + & (n - 1) & + & \cdots & + & 2 & + & 1 \\
 \hline
 (n + 1) & + & (n + 1) & + & \cdots & + & (n + 1) & + & (n + 1)
 \end{array}
 \]

- Adding the columns gives \(n \) terms, all equal to \(n + 1 \), so
 \[
 2 \sum_{k=1}^{n} k = n(n + 1).
 \]
Sum- and difference rule:

\[
\sum_{k=M}^{N} (a_k + b_k) = \sum_{k=M}^{N} a_k + \sum_{k=M}^{N} b_k, \quad \text{and} \quad \sum_{k=M}^{N} (a_k - b_k) = \sum_{k=M}^{N} a_k - \sum_{k=M}^{N} b_k.
\]
- **Sum- and difference rule:**
 \[
 \sum_{k=M}^{N} (a_k + b_k) = \sum_{k=M}^{N} a_k + \sum_{k=M}^{N} b_k, \quad \text{and} \quad \sum_{k=M}^{N} (a_k - b_k) = \sum_{k=M}^{N} a_k - \sum_{k=M}^{N} b_k.
 \]

- **Constant multiple rule:**
 \[
 \sum_{k=M}^{N} c \cdot a_k = c \sum_{k=M}^{N} a_k.
 \]
- **Sum- and difference rule:**

\[
\sum_{k=M}^{N} (a_k + b_k) = \sum_{k=M}^{N} a_k + \sum_{k=M}^{N} b_k, \quad \text{and} \quad \sum_{k=M}^{N} (a_k - b_k) = \sum_{k=M}^{N} a_k - \sum_{k=M}^{N} b_k.
\]

- **Constant multiple rule:**

\[
\sum_{k=M}^{N} c a_k = c \sum_{k=M}^{N} a_k.
\]

- **Constant value rule:**

\[
\sum_{k=M}^{N} c = (N - M + 1) c.
\]
- **Sum- and difference rule:**
 \[\sum_{k=M}^{N} (a_k + b_k) = \sum_{k=M}^{N} a_k + \sum_{k=M}^{N} b_k, \text{ and } \sum_{k=M}^{N} (a_k - b_k) = \sum_{k=M}^{N} a_k - \sum_{k=M}^{N} b_k. \]

- **Constant multiple rule:**
 \[\sum_{k=M}^{N} c \cdot a_k = c \sum_{k=M}^{N} a_k. \]

- **Constant value rule:**
 \[\sum_{k=M}^{N} c = (N - M + 1) c. \]

- **Splitting rule:**
 \[\sum_{k=M}^{N} a_k = \sum_{k=M}^{P} a_k + \sum_{k=P+1}^{N} a_k. \]
Define S_n as the sum of the first n odd integers:

$$S_n = 1 + 3 + \cdots + (2n - 1)$$
Example

- Define S_n as the sum of the first n odd integers:

$$S_n = 1 + 3 + \cdots + (2n - 1)$$

- Notice that

$$S_n + (2 + 4 + \cdots + 2n) = 1 + 2 + 3 + \cdots + (2n - 1) + 2n$$

$$= \frac{2n(2n + 1)}{2} = n(2n + 1) = 2n^2 + n$$
Example

Define S_n as the sum of the first n odd integers:

$$S_n = 1 + 3 + \cdots + (2n - 1)$$

Notice that

$$S_n + (2 + 4 + \cdots + 2n) = 1 + 2 + 3 + \cdots + (2n - 1) + 2n$$

$$= \frac{2n(2n + 1)}{2} = n(2n + 1) = 2n^2 + n$$

Furthermore

$$2 + 4 + \cdots + 2n = \sum_{k=1}^{n} 2k = 2 \sum_{k=1}^{n} k$$

$$= 2 \cdot \frac{n(n + 1)}{2} = n(n + 1) = n^2 + n.$$
Example

- Define S_n as the sum of the first n odd integers:
 \[S_n = 1 + 3 + \cdots + (2n - 1) \]

- Notice that
 \[
 S_n + (2 + 4 + \cdots + 2n) = 1 + 2 + 3 + \cdots + (2n - 1) + 2n \\
 = \frac{2n(2n + 1)}{2} = n(2n + 1) = 2n^2 + n
 \]

- Furthermore
 \[
 2 + 4 + \cdots + 2n = \sum_{k=1}^{n} 2k = 2 \sum_{k=1}^{n} k \\
 = 2 \cdot \frac{n(n + 1)}{2} = n(n + 1) = n^2 + n.
 \]

- Therefore
 \[
 S_n = (2n^2 + n) - (n^2 + n)
 \]
Define S_n as the sum of the first n odd integers:

$$S_n = 1 + 3 + \cdots + (2n - 1)$$

Notice that

$$S_n + (2 + 4 + \cdots + 2n) = 1 + 2 + 3 + \cdots + (2n - 1) + 2n$$

$$= \frac{2n(2n + 1)}{2} = n(2n + 1) = 2n^2 + n$$

Furthermore

$$2 + 4 + \cdots + 2n = \sum_{k=1}^{n} 2k = 2 \sum_{k=1}^{n} k$$

$$= 2 \cdot \frac{n(n + 1)}{2} = n(n + 1) = n^2 + n.$$

Therefore

$$S_n = (2n^2 + x) - (n^2 + x) = n^2.$$
The sum of the first n odd integers is equal to n^2:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>9</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Note that
\[1^2 + 2^2 + 3^2 + 4^2 + 5^2 = \sum_{k=1}^{5} k^2,\]
but also
\[1^2 + 2^2 + 3^2 + 4^2 + 5^2 = \sum_{m=0}^{4} (m + 1)^2,\]
and even
\[1^2 + 2^2 + 3^2 + 4^2 + 5^2 = \sum_{h=3}^{7} (h - 2)^2.\]
Shifting the index

Note that

\[1^2 + 2^2 + 3^2 + 4^2 + 5^2 = \sum_{k=1}^{5} k^2, \]

but also

\[1^2 + 2^2 + 3^2 + 4^2 + 5^2 = \sum_{m=0}^{4} (m + 1)^2, \]

and even

\[1^2 + 2^2 + 3^2 + 4^2 + 5^2 = \sum_{h=3}^{7} (h - 2)^2. \]

Since the index is a dummy, you could even write

\[\sum_{k=1}^{5} k^2 = \sum_{k=0}^{4} (k + 1)^2 = \sum_{k=3}^{7} (k - 2)^2. \]
Assignment: IMM1 - Tutorial 6.1
Definition

A partition of the interval \([a, b]\) in \(n\) subintervals is a sequence \(x_0, x_1, \ldots, x_n\) constructed as follows:

\[(i)\quad \Delta x = \frac{b - a}{n}\]
\[(ii)\quad x_k = a + k\Delta x \quad (k = 0, 1, \ldots, n)\]
Definition

A partition of the interval \([a, b]\) in \(n\) subintervals is a sequence \(x_0, x_1, \ldots, x_n\) constructed as follows:

(i) \(\Delta x = \frac{b - a}{n}\)

(ii) \(x_k = a + k\Delta x\) \((k = 0, 1, \ldots, n)\)

Note that

\[x_0 = a, \quad x_n = b, \quad x_k - x_{k-1} = \Delta x.\]
A partition of the interval \([a, b]\) in \(n\) subintervals is a sequence \(x_0, x_1, \ldots, x_n\) constructed as follows:

(i) \(\Delta x = \frac{b - a}{n}\)

(ii) \(x_k = a + k\Delta x\) \((k = 0, 1, \ldots, n)\)

- Note that

\[x_0 = a, \quad x_n = b, \quad x_k - x_{k-1} = \Delta x.\]

- The number \(\Delta x\) is called the mesh of the partition.
Partition $[a, b]$ in 4 subintervals.

Definition

We define the 4-th Riemann sum of f over $[a, b]$ as

$$\sum_{k=1}^{4} f(x_k) \cdot \Delta x \quad \text{where} \quad \Delta x = \frac{b - a}{4}$$
Partition \([a, b]\) in 8 subintervals.

Definition

We define the 8-th Riemann sum of \(f\) over \([a, b]\) as

\[
\sum_{k=1}^{8} f(x_k) \cdot \Delta x \quad \text{where} \quad \Delta x = \frac{b - a}{8}
\]
Partition \([a, b]\) in \(n\) subintervals.

Definition

We define the \(n\)-th Riemann sum of \(f\) over \([a, b]\) as

\[
\sum_{k=1}^{n} f(x_k) \cdot \Delta x \quad \text{where} \quad \Delta x = \frac{b - a}{n}
\]
Consider a moving object and assume that we know its velocity as a function of time $v(t)$.

Can we compute the displacement using the function $v(t)$?
Consider a moving object and assume that we know its velocity as a function of time $v(t)$.

Can we compute the displacement using the function $v(t)$?

- If $v(t) = v_0$ is constant, then the displacement is equal to the product of v_0 and the elapsed time.
Computing displacement from velocity

Consider a moving object and assume that we know its velocity as a function of time \(v(t) \).

Can we compute the displacement using the function \(v(t) \)?

- If \(v(t) = v_0 \) is constant, then the displacement is equal to the product of \(v_0 \) and the elapsed time.
- If \(v(t) \) is not constant, then we approximate the displacement with a Riemann sum.
Assume that we know the velocity $v(t)$ for $a \leq t \leq b$, then we can find an estimate for the displacement while t elapses from a to b.

(1) Partition the interval $[a, b]$ in n subintervals with mesh $\Delta t = \frac{b - a}{n}$ and intermediate points $t_k = a + k\Delta t$.

(2) - While t runs from $a = t_0$ to t_1, the displacement is approximately $v(t_1)\Delta t$;
- while t runs from t_1 to t_2, the displacement is approximately $v(t_2)\Delta t$;
 etcetera.

(3) The total displacement is approximately

$$\sum_{k=1}^{n} v(t_k)\Delta t.$$
Assignment: IMM1 - Tutorial 6.2

Note: The Riemann sums that are used in the slides are upper sums. For lower sums, choose the function value at the left boundary of all subintervals:

\[\sum_{k=1}^{n} f(x_k) \Delta x \quad \text{where} \quad \Delta x = \frac{b - a}{n} \quad \text{and} \quad x_k = a + (k - 1)\Delta x. \]
Approximate the area of the triangle with vertices (0, 0), (1, 0) and (1, 1) with a Riemann sum.
Approximate the area of the triangle with vertices \((0, 0), (1, 0)\) and \((1, 1)\) with a Riemann sum.

Define the partition \(x_k = k\Delta x = \frac{k}{n}\) with \(\Delta x = \frac{1}{n}\).
Approximate the area of the triangle with vertices (0, 0), (1, 0) and (1, 1) with a Riemann sum.

- Define the partition \(x_k = k\Delta x = \frac{k}{n} \) with \(\Delta x = \frac{1}{n} \).
- The Riemann sum of \(f(x) = x \) is

\[
\sum_{k=1}^{n} x_k \Delta x = \sum_{k=1}^{n} \frac{k}{n} \cdot \frac{1}{n}.
\]
Evaluate the Riemann sum:

\[\sum_{k=1}^{n} x_k \Delta x = \sum_{k=1}^{n} \frac{k}{n} \cdot \frac{1}{n} \]
Evaluate the Riemann sum:

\[
\sum_{k=1}^{n} x_k \Delta x = \sum_{k=1}^{n} \frac{k}{n} \cdot \frac{1}{n} = \sum_{k=1}^{n} \frac{k}{n^2}
\]
Evaluate the Riemann sum:

\[
\sum_{k=1}^{n} x_k \Delta x = \sum_{k=1}^{n} \frac{k}{n} \cdot \frac{1}{n} = \sum_{k=1}^{n} \frac{k}{n^2} = \frac{1}{n^2} \sum_{k=1}^{n} k
\]
Evaluate the Riemann sum:

\[
\sum_{k=1}^{n} x_k \Delta x = \sum_{k=1}^{n} \frac{k}{n} \cdot \frac{1}{n} = \sum_{k=1}^{n} \frac{k}{n^2} = \frac{1}{n^2} \sum_{k=1}^{n} k
\]

\[
= \frac{1}{n^2} \frac{n(n+1)}{2} = \frac{1}{2} \left(1 + \frac{1}{n}\right) = \frac{1}{2} + \frac{1}{2n}.
\]
Evaluate the Riemann sum:

\[\sum_{k=1}^{n} x_k \Delta x = \sum_{k=1}^{n} \frac{k}{n} \cdot \frac{1}{n} = \sum_{k=1}^{n} \frac{k}{n^2} = \frac{1}{n^2} \sum_{k=1}^{n} k = \frac{1}{n^2} \cdot \frac{n(n+1)}{2} = \frac{1}{2} \left(1 + \frac{1}{n} \right) = \frac{1}{2} + \frac{1}{2n}. \]

If we let \(n \) approach infinity then

\[\lim_{n \to \infty} \sum_{k=1}^{n} x_k \Delta x = \frac{1}{2}. \]
■ Evaluate the Riemann sum:
\[
\sum_{k=1}^{n} x_k \Delta x = \sum_{k=1}^{n} \frac{k}{n} \cdot \frac{1}{n} = \sum_{k=1}^{n} \frac{k}{n^2} = \frac{1}{n^2} \sum_{k=1}^{n} k \\
= \frac{1}{n^2} \frac{n(n+1)}{2} = \frac{1}{2} \left(1 + \frac{1}{n}\right) = \frac{1}{2} + \frac{1}{2n}.
\]

■ If we let \(n \) approach infinity then
\[
\lim_{n \to \infty} \sum_{k=1}^{n} x_k \Delta x = \frac{1}{2}.
\]
Evaluate the Riemann sum:

\[\sum_{k=1}^{n} x_k \Delta x = \sum_{k=1}^{n} \frac{k}{n} \cdot \frac{1}{n} = \sum_{k=1}^{n} \frac{k}{n^2} = \frac{1}{n^2} \sum_{k=1}^{n} k \]

\[= \frac{1}{n^2} \frac{n(n+1)}{2} = \frac{1}{2} \left(1 + \frac{1}{n} \right) = \frac{1}{2} + \frac{1}{2n}. \]

If we let \(n \) approach infinity then

\[\lim_{n \to \infty} \sum_{k=1}^{n} x_k \Delta x = \frac{1}{2}. \]
Evaluate the Riemann sum:

\[
\sum_{k=1}^{n} x_k \Delta x = \sum_{k=1}^{n} \frac{k}{n} \cdot \frac{1}{n} = \sum_{k=1}^{n} \frac{k}{n^2} = \frac{1}{n^2} \sum_{k=1}^{n} k = \frac{1}{n^2} \frac{n(n+1)}{2} = \frac{1}{2} \left(1 + \frac{1}{n} \right) = \frac{1}{2} + \frac{1}{2n}.
\]

If we let \(n \) approach infinity then

\[
\lim_{n \to \infty} \sum_{k=1}^{n} x_k \Delta x = \frac{1}{2}.
\]
For a positive function, a Riemann sum can be regarded as the approximation of the surface area of the region R bounded by the graph of f, the x axis, and the lines $x = a$ and $x = b$.

Definition

The **definite integral of f over the interval** $[a, b]$ is defined as

$$\int_a^b f(x) \, dx = \lim_{n \to \infty} \left(\sum_{k=1}^n f(x_k) \cdot \Delta x \right)$$

A definite integral can be regarded as the area of the region R.
The variable in the integral is a *dummy*:

\[
\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(u) \, du
\]
The variable in the integral is a *dummy*:

\[
\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(u) \, du
\]

Linearity:

\[
\int_{a}^{b} \alpha f(x) + \beta g(x) \, dx = \alpha \int_{a}^{b} f(x) \, dx + \beta \int_{a}^{b} g(x) \, dx
\]
Laws of integration

- The variable in the integral is a *dummy*:

\[
\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(u) \, du
\]

- Linearity:

\[
\int_{a}^{b} \alpha f(x) + \beta g(x) \, dx = \alpha \int_{a}^{b} f(x) \, dx + \beta \int_{a}^{b} g(x) \, dx
\]

- Additivity:

\[
\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx
\]
The variable in the integral is a \textit{dummy}:

\[
\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(u) \, du
\]

Linearity:

\[
\int_{a}^{b} \alpha f(x) + \beta g(x) \, dx = \alpha \int_{a}^{b} f(x) \, dx + \beta \int_{a}^{b} g(x) \, dx
\]

Additivity:

\[
\int_{a}^{b} f(x) \, dx = \int_{a}^{c} f(x) \, dx + \int_{c}^{b} f(x) \, dx
\]

Interchanging the upper and lower limit gives a minus sign:

\[
\int_{a}^{b} f(x) \, dx = - \int_{b}^{a} f(x) \, dx
\]
If a function is negative on an interval, then the integral over that interval is negative.
If a function is negative on an interval, then the integral over that interval is negative.

The integral adds the areas of the positive part of f, but subtracts the areas of the negative parts:

$$\int_a^b f(x) \, dx = \text{Area}(A) - \text{Area}(B).$$
Constant functions

\[\int_a^b c \, dx = c(b - a) \]

Notice that the Riemann sum of any partition is

\[\sum_{k=1}^{n} c \Delta x = n \cdot c \Delta x = c \frac{b - a}{n} = c(b - a). \]
\[
\int_a^b x \, dx = \frac{1}{2} b^2 - \frac{1}{2} a^2
\]
Laws of integration

\[\int_{a}^{b} x \, dx = \frac{1}{2} b^2 - \frac{1}{2} a^2 \]

- Note that \(\frac{1}{2} b^2 - \frac{1}{2} a^2 = \frac{1}{2} (b + a)(b - a) = \text{Area}(R). \)
Assignment: IMM1 - Tutorial 6.3
Differentiate displacement to compute velocity:

\[v(t) = s'(t) \]
Differentiate displacement to compute velocity:

\[v(t) = s'(t) \]

The displacement can be computed from the velocity by integrating:

\[s(t) = \lim_{n \to \infty} \sum_{k=1}^{n} v(t_k) \Delta t = \int_{0}^{t} v(\tau) \, d\tau \]

The integral \(\int_{0}^{t} v(\tau) \, d\tau \) is a function \(s(t) \) whose derivative is \(v \).
Add the charges in all compartments:

\[Q(t) = \sum_{k=1}^{n} i(t_k) \Delta t. \]
Add the charges in all compartments:

\[Q(t) = \sum_{k=1}^{n} i(t_k) \Delta t. \]

The total charge passing through \(A \) is

\[Q(t) = \lim_{n \to \infty} \sum_{k=1}^{n} i(t_k) \Delta t = \int_{0}^{t} i(\tau) \, d\tau. \]
Add the charges in all compartments:

\[Q(t) = \sum_{k=1}^{n} i(t_k) \Delta t. \]

The total charge passing through \(A \) is

\[Q(t) = \lim_{n \to \infty} \sum_{k=1}^{n} i(t_k) \Delta t = \int_{0}^{t} i(\tau) \, d\tau. \]

Current is the rate of change of charge:

\[i(t) = Q'(t). \]
Definition

We call a function F an **antiderivative** for f if $F'(x) = f(x)$.
Antiderivatives

Definition

We call a function F an **antiderivative** for f if $F'(x) = f(x)$.

- Antiderivatives are not unique. If F is an antiderivative for f, then so is $F(x) + C$ for any constant C:
 \[
 \frac{d}{dx}(F(x) + C) = F'(x) = f(x).
 \]
Antiderivatives

Definition

We call a function F an antiderivative for f if $F'(x) = f(x)$.

- Antiderivatives are not unique. If F is an antiderivative for f, then so is $F(x) + C$ for any constant C:

$$\frac{d}{dx}(F(x) + C) = F'(x) = f(x).$$

Theorem

Let (x_0, y_0) be a point in the plane. Then there is a unique antiderivative F of f for which $F(x_0) = y_0$.
Let \(f(x) = e^x + 1 \), then \(F(x) = e^x + x \) is an antiderivative of \(f \).
Let $f(x) = e^x + 1$, then $F(x) = e^x + x$ is an antiderivative of f.

For arbitrary C the function

$$F_C(x) = e^x + x + C$$

is also an antiderivative of f.

\[F(0) = 4 = e^0 + 0 + C \]

Hence $C = 3$.

\[F(x) = e^x + x + 3 \]
Example

Let $f(x) = e^x + 1$, then $F(x) = e^x + x$ is an antiderivative of f.

For arbitrary C the function

$$F_c(x) = e^x + x + C$$

is also an antiderivative of f.

There is only one antiderivative of f for which $F(0) = 4$:

$$F(x) = e^x + x + 3.$$
Example

Let \(f(x) = e^x + 1 \), then \(F(x) = e^x + x \) is an antiderivative of \(f \).

For arbitrary \(C \) the function
\[
F_c(x) = e^x + x + C
\]
is also an antiderivative of \(f \).

There is only one antiderivative of \(f \) for which \(F(0) = 4 \):
\[
F(x) = e^x + x + 3.
\]
The correct value for \(C \) is found by solving the equation \(F_c(0) = 4 \):
\[
4 = F_c(0) = e^0 + 0 + C = 1 + C,
\]
hence \(C = 3 \).
The Fundamental Theorem of Calculus

1. Define the function
 \[F(x) = \int_a^x f(t) \, dt, \]
 then \(F \) is an antiderivative for \(f \), in other words: \(F'(x) = f(x) \).

2. If \(F \) is an antiderivative for \(f \) then
 \[\int_a^b f(t) \, dt = F(b) - F(a). \]
The Fundamental Theorem of Calculus

1. Define the function

\[F(x) = \int_a^x f(t) \, dt, \]

then \(F \) is an antiderivative for \(f \), in other words: \(F'(x) = f(x) \).

2. If \(F \) is an antiderivative for \(f \) then

\[\int_a^b f(t) \, dt = F(b) - F(a). \]

- Notation: \(F(b) - F(a) = \left[F(x) \right]_a^b = F(x) \bigg|_a^b \).
The inverse of differentiation

The Fundamental Theorem of Calculus

1. Define the function

\[F(x) = \int_a^x f(t) \, dt, \]

then \(F \) is an antiderivative for \(f \), in other words: \(F'(x) = f(x) \).

2. If \(F \) is an antiderivative for \(f \) then

\[\int_a^b f(t) \, dt = F(b) - F(a). \]

- Notation: \(F(b) - F(a) = \left[F(x) \right]^b_a = F(x) \bigg|_a^b \).
- The function \(F(x) = \int_a^x f(t) \, dt \) also satisfies \(F(a) = 0 \), so \(F \) is the unique antiderivative of \(f \) for which \(F(a) = 0 \).
The inverse of differentiation

$$F(x) = \int_a^x f(t) \, dt$$

$$F'(x) = \lim_{h \to 0} \frac{F(x + h) - F(x)}{h} = \lim_{h \to 0} \frac{1}{h} \int_x^{x+h} f(t) \, dt = f(x)$$
The inverse of differentiation

\[F(x) = \int_{a}^{x} f(t) \, dt \]

\[F'(x) = \lim_{h \to 0} \frac{F(x + h) - F(x)}{h} = \lim_{h \to 0} \frac{1}{h} \int_{x}^{x+h} f(t) \, dt = f(x) \]
The inverse of differentiation

\[F(x) = \int_a^x f(t) \, dt \]

\[F'(x) = \lim_{h \to 0} \frac{F(x + h) - F(x)}{h} = \lim_{h \to 0} \frac{1}{h} \int_x^{x+h} f(t) \, dt = f(x) \]
The inverse of differentiation

\[F(x) = \int_a^x f(t) \, dt \]

\[F'(x) = \lim_{h \to 0} \frac{F(x + h) - F(x)}{h} = \lim_{h \to 0} \frac{1}{h} \int_x^{x+h} f(t) \, dt = f(x) \]
Integrals with \sin and \cos

\[\int_a^b f(x) \, dx = F(x) \bigg|_a^b = F(b) - F(a) \quad \text{where } F' = f. \]

\[
\int_0^{\pi/2} \sin(x) \, dx = -\cos(x) \bigg|_0^{\pi/2} \\
= -\cos\left(\frac{\pi}{2}\right) - (-\cos 0) \\
= -0 - (-1) = 1
\]
Integrals with \(\sin\) and \(\cos\)

\[
\int_a^b f(x) \, dx = F(x) \bigg|_a^b = F(b) - F(a) \quad \text{where } F' = f.
\]

\[\int_0^{\pi/2} \sin(x) \, dx = -\cos(x) \bigg|_0^{\pi/2} = -\cos\left(\frac{\pi}{2}\right) - (-\cos 0) = -0 - (-1) = 1\]

\[\int_\pi^{2\pi} \sin(x) \, dx = -\cos(x) \bigg|_\pi^{2\pi} = -\cos(2\pi) - (-\cos(\pi)) = -1 - (-(-1)) = -2\]
The antiderivative of $\cos(x)$

$$\int_0^x \cos(t) \, dt = \sin(t) \bigg|_{t=0}^x = \sin(x).$$
The antiderivative of $\cos(x)$

\[
\int_0^x \cos(t) \, dt = \sin(t) \bigg|_{t=0}^{x} = \sin(x).
\]
The antiderivative of $\cos(x)$

\[
\int_0^x \cos(t) \, dt = \sin(t) \bigg|_{t=0}^x = \sin(x).
\]
The antiderivative of $\cos(x)$

$$\int_0^x \cos(t) \, dt = \sin(t) \bigg|_{t=0}^x = \sin(x).$$
The antiderivative of $\cos(x)$

\[
\int_0^x \cos(t) \, dt = \sin(t) \bigg|_{t=0}^{x} = \sin(x).
\]
The antiderivative of $\cos(x)$

\[
\int_0^x \cos(t) \, dt = \sin(t) \bigg|_{t=0}^x = \sin(x).
\]
The antiderivative of $\cos(x)$

$$\int_0^x \cos(t) \, dt = \sin(t) \bigg|_{t=0}^{x} = \sin(x).$$
The antiderivative of $\cos(x)$

\[
\int_0^x \cos(t) \, dt = \sin(t) \bigg|_{t=0}^{x} = \sin(x).
\]
The antiderivative of $\cos(x)$

$$\int_0^x \cos(t) \, dt = \sin(t) \bigg|_{t=0}^{x} = \sin(x).$$
The antiderivative of $\cos(x)$

$$\int_0^x \cos(t) \, dt = \sin(t) \bigg|_{t=0}^x = \sin(x).$$
The antiderivative of $\cos(x)$

\[\int_0^x \cos(t) \, dt = \sin(t) \bigg|_{t=0}^{x} = \sin(x). \]
The antiderivative of $\cos(x)$

$$\int_0^x \cos(t) \, dt = \sin(t) \bigg|_{t=0}^x = \sin(x).$$
The antiderivative of $\sin(x)$

\[
\int_0^x \sin(t) \, dt = -\cos(t) \bigg|_0^x = -\cos(x) - (-1) = -\cos(x) + 1.
\]
The antiderivative of $\sin(x)$

$$\int_0^x \sin(t) \, dt = -\cos(t) \bigg|_{t=0}^x = -\cos(x) - (-1) = -\cos(x) + 1.$$
The antiderivative of $\sin(x)$

$$\int_0^x \sin(t) \, dt = -\cos(t) \bigg|_{t=0}^x = -\cos(x) - (-1) = -\cos(x) + 1.$$
The antiderivative of $\sin(x)$

\[
\int_{0}^{x} \sin(t) \, dt = -\cos(t) \bigg|_{t=0}^{x} = -\cos(x) - (-1) = -\cos(x) + 1.
\]
The antiderivative of $\sin(x)$

\[
\int_0^x \sin(t) \, dt = -\cos(t) \bigg|_{t=0}^x = -\cos(x) - (-1) = -\cos(x) + 1.
\]
The antiderivative of $\sin(x)$

\[
\int_0^x \sin(t) \, dt = -\cos(t) \bigg|_0^x = -\cos(x) - (-1) = -\cos(x) + 1.
\]
The antiderivative of $\sin(x)$

\[
\int_0^x \sin(t) \, dt = -\cos(t) \bigg|_{t=0}^x = -\cos(x) - (-1) = -\cos(x) + 1.
\]
The antiderivative of $\sin(x)$

\[\int_0^x \sin(t) \, dt = -\cos(t) \bigg|_{t=0}^x = -\cos(x) - (-1) = -\cos(x) + 1. \]
The antiderivative of $\sin(x)$

\[
\int_0^x \sin(t) \, dt = -\cos(t) \bigg|_{t=0}^x = -\cos(x) + (1) = -\cos(x) + 1.
\]
The antiderivative of $\sin(x)$

$$\int_0^x \sin(t) \, dt = -\cos(t) \bigg|_{t=0}^{x} = -\cos(x) - (-1) = -\cos(x) + 1.$$
The antiderivative of $\sin(x)$

\[\int_0^x \sin(t) \, dt = -\cos(t) \bigg|_{t=0}^{x} = -\cos(x) - (-1) = -\cos(x) + 1. \]
The antiderivative of $\sin(x)$

\[
\int_0^x \sin(t) \, dt = -\cos(t) \bigg|_{t=0}^x = -\cos(x) - (-1) = -\cos(x) + 1.
\]
Notice that for arbitrary real α we have

$$\frac{d}{dx} \left(x^{\alpha+1} \right) = (\alpha + 1)x^\alpha.$$
Notice that for arbitrary real α we have

$$\frac{d}{dx} \left(x^{\alpha+1} \right) = (\alpha + 1) x^\alpha.$$

Hence, if $\alpha \neq -1$:

$$\frac{d}{dx} \left(\frac{1}{\alpha+1} x^{\alpha+1} \right) = x^\alpha.$$
Notice that for arbitrary real α we have

$$\frac{d}{dx} \left(x^{\alpha+1} \right) = (\alpha + 1) x^{\alpha}.$$

Hence, if $\alpha \neq -1$:

$$\frac{d}{dx} \left(\frac{1}{\alpha+1} x^{\alpha+1} \right) = x^\alpha.$$

The antiderivative of x^α is:

$$\frac{1}{\alpha + 1} x^{\alpha+1} + C \quad \text{if} \quad \alpha \neq -1.$$
Notice that for arbitrary real α we have
\[
\frac{d}{dx} \left(x^{\alpha+1} \right) = (\alpha + 1)x^\alpha.
\]

Hence, if $\alpha \neq -1$:
\[
\frac{d}{dx} \left(\frac{1}{\alpha+1} x^{\alpha+1} \right) = x^\alpha.
\]

The antiderivative of x^α is:
\[
\frac{1}{\alpha + 1} x^{\alpha+1} + C \quad \text{if } \alpha \neq -1.
\]

The antiderivative of $x^{-1} = \frac{1}{x}$ is:
\[
\ln |x| + C.
\]

See lecture 5
\[
\int_{0}^{1} (2x^3 - 2x + 1) \, dx
\]
\[
\int_0^1 (2x^3 - 2x + 1) \, dx = \int_0^1 2x^3 \, dx - \int_0^1 2x \, dx + \int_0^1 1 \, dx
\]
\[\int_0^1 2x^3 - 2x + 1 \, dx = \int_0^1 2x^3 \, dx - \int_0^1 2x \, dx + \int_0^1 1 \, dx \]

\[= \left[\frac{1}{2} x^4 \right]_0^1 - \left[x^2 \right]_0^1 + \left[x \right]_0^1 \]
\[
\int_0^1 2x^3 - 2x + 1 \, dx = \int_0^1 2x^3 \, dx - \int_0^1 2x \, dx + \int_0^1 1 \, dx
\]

\[
= \left[\frac{1}{2} x^4 \right]_0^1 - \left[x^2 \right]_0^1 + \left[x \right]_0^1
\]

\[
= \left(\frac{1}{2} \cdot 1^4 - \frac{1}{2} \cdot 0^4 \right) - (1^2 - 0^2) + (1 - 0)
\]
\[
\int_0^1 2x^3 - 2x + 1 \, dx = \int_0^1 2x^3 \, dx - \int_0^1 2x \, dx + \int_0^1 1 \, dx
\]

\[
= \left[\frac{1}{2} x^4 \right]_0^1 - \left[x^2 \right]_0^1 + \left[x \right]_0^1
\]

\[
= \left(\frac{1}{2} \cdot 1^4 - \frac{1}{2} \cdot 0^4 \right) - (1^2 - 0^2) + (1 - 0)
\]

\[
= \frac{1}{2} - 1 + 1 = \frac{1}{2}.
\]
Assignment: IMM1 - Tutorial 6.4